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Predicting Protein Post-translational
Modifications Using Meta-analysis of
Proteome Scale Data Sets*s

Daniel Schwartzt§, Michael F. Chouzt, and George M. Church

Protein post-translational modifications are an important
biological regulatory mechanism, and the rate of their
discovery using high throughput techniques is rapidly in-
creasingly. To make use of this wealth of sequence data,
we introduce a new general strategy designed to predict
a variety of post-translational modifications in several or-
ganisms. We used the motif-x program to determine
phosphorylation motifs in yeast, fly, mouse, and man and
lysine acetylation motifs in man. These motifs were then
scanned against proteomic sequence data using a newly
developed tool called scan-x to globally predict other po-
tential modification sites within these organisms. 10-fold
cross-validation was used to determine the sensitivity and
minimum specificity for each set of predictions, all of
which showed improvement over other available tools for
phosphoprediction. New motif discovery is a byproduct of
this approach, and the phosphorylation motif analyses
provide strong evidence of evolutionary conservation of
both known and novel kinase motifs. Molecular & Cel-
lular Proteomics 8:365-379, 2009.

Few if any proteins are unaffected by protein post-transla-
tional modifications (PTMs)." These modifications serve not
only to diversify the chemical and physical repertoire of the
individual amino acids but also act as key agents of protein
regulation that have been implicated in nearly every facet of
modern cellular biology (1). Although in the past the identifi-
cation of such modifications and their precise location along
the protein backbone was a difficult and time-consuming
task, the advent of high throughput techniques, most notably
tandem mass spectrometry, has led to the identification of
well over 40,000 precisely localized sites of modification in the

From the Department of Genetics, Harvard Medical School,
Boston, Massachusetts 02115

Received, July 22, 2008, and in revised form, October 27, 2008

Published, MCP Papers in Press, October 28, 2008, DOI 10.1074/
mcp.M800332-MCP200

" The abbreviations used are: PTM, post-translational modification;
PKA, protein kinase A; PWM, position weight matrix; CK Il, casein
kinase Il; CK 1, casein kinase |; TP, true positive; FP, false positive; TN,
true negative; FN, false negative; ROC, receiver operating character-
istic; PSSM, position-specific scoring matrix; RalBP1, RalA-binding
protein 1; MAPK, mitogen-activated protein kinase; CDK, cyclin-de-
pendent kinase; SGD, Saccharomyces genome database; IPI, Inter-
national Protein Index.

past 5 years alone (2—4). The most significant increase in data
has come in the field of protein phosphorylation where whole
proteome scale studies are routinely reaching several thou-
sand unique and novel sites across a wide range of species
(5-8), and recently a large new data set has become available
containing thousands of human lysine acetylation sites (2).

Although impressive in magnitude and often exciting be-
cause of the implication of aberrant phosphorylation in a
variety of human diseases, the number of novel PTMs identi-
fied in such large scale studies also demonstrates the fact that
our knowledge of all PTMs is not yet near the point of satu-
ration. Also there are a number of other modification types for
which large enzyme families are known to exist (e.g. ubiquitin
ligases and acetyltransferases) but for which little substrate
PTM data exist in any organism. To inform directed biological
experimentation for proteins of interest, we would ideally like
to know all of the modification types, the sites of the modifi-
cations, and the enzyme responsible for each modification.

Until such a time when all modifications can be easily
measured, computational methods of prediction can be cru-
cial to inform hypothesis-driven biology. The current state of
the art in mass spectrometry provides uneven sequence cov-
erage of proteins because of systematic biases that are not
completely understood, and sequence coverage typically var-
ies widely between 20 and 40% (9, 10). Increasing protein
coverage by mass spectrometry is an active area of research,
and reasons for this reduced coverage may include sample
preparation biases, mass spectrometer instrumentation limi-
tations (including limited sensitivity or limited mass range),
and failures involving spectral analysis. Thus, even as we
begin to amass modification data, computational tools will still
fill the need to predict PTMs in sequences refractory to direct
measurement.

Historically the most studied PTM has been phosphoryla-
tion, which can be used as an example of approaches to the
general prediction of PTMs. To date, tools for the prediction of
phosphorylation sites have largely fallen into two general ap-
proaches. In one approach, the kinase (or enzyme-specific)
approach, tools have been based on the principle that each
kinase has its own unique sequence specificity. This principle
is strongly supported by biological and crystallographic stud-
ies examining kinase substrate recognition (11, 12). By using
kinase-substrate data available from literature searches, da-
tabases (such as Phospho.ELM (13)), or combinatorial pep-
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tide library screens, these tools have been able to get kinase-
specific signatures that can be used to predict other
substrates of a particular kinase (14-17). Although such tools
have utilized the information contained within kinase-specific
motifs, they are limited by the amount of available data for
each kinase. For example, in the case of protein kinase A
(PKA), the kinase with the greatest number of known sub-
strate phosphorylation sites, fewer than 400 sites are currently
known (13). Furthermore these sites come from a wide variety
of organisms, forcing such tools to operate under the as-
sumption that kinase specificities are universal, thereby
making organism-specific prediction virtually impossible.
Combinatorial peptide library screening approaches to phos-
phorylation prediction (16) do not suffer from a data defi-
ciency; however, their high cost per experiment and in vitro
basis have limited their predictive abilities to only a fraction of
all known kinases.

In the other approach, a kinase-independent (or enzyme-
independent) approach, several new phosphorylation predic-
tion tools have been developed that do not rely on kinase-
specific data. These tools are aimed at using mass
spectrometry data, which contains only phosphorylation sites
without regard to the responsible enzyme. Some of these
tools use neural networks (18) or support vector machines
(19), which, generally speaking, do not need to model the
properties of substrate recognition inherent in an enzyme-
specific approach. Although not an intrinsic limitation, even
though abundant data exists, these tools have used only a
small percentage of publicly accessible data from a narrow
set of organisms, limiting the current scope of their
predictions.

The novel approach presented here combines the best of
both the enzyme-specific and enzyme-independent predic-
tion methodologies. We first used a previously developed tool
known as motif-x (20) that has been successfully used to find
motifs in a number of large scale phosphorylation studies
(21-24). Briefly the motif-x algorithm discovers overrepre-
sented motifs in user-provided data sets, and the output of
the motif discovery process is a set of all motifs containing
highly significant residues in fixed positions (for example
RRXS) and an accompanying position weight matrix (PWM)
containing statistical information for motif positions that did
not meet significance thresholds. Many motifs found using
motif-x have been shown to directly correspond to particular
known kinase or kinase family recognition sites. motif-x is
used here in a meta-analysis to automatically partition all
available data of a particular modification type and organism
into individual motifs. To maximize the yield of motif discov-
ery, we used nearly all publicly available modification data
from large data sets that, when merged, contain over 50,000
unique sites of modification.

Although the motif-x algorithm was designed to discover
overrepresented short linear motifs within a given data set, a
previously lacking feature of motif-x was the ability to predict

additional instances of a motif within a user-provided pro-
teomic sequence. However, version 2.0 of motif-x along with
a companion program called scan-x that can locate and score
motifs in any protein sequence is about to be released.? In this
study we utilized features of this new version of motif-x and
demonstrate a simple and effective way to use the accompa-
nying scan-x program to predict several protein post-transla-
tional modifications in the proteomes of a number of
organisms.

In several cases, this study marks the first attempt to pre-
dict a particular modification in a given organism (e.g. serine
and threonine phosphorylation in Drosophila and tyrosine
phosphorylation in human). In the case of lysine acetylation,
this study marks the first computationally based determina-
tion of acetylation motifs and the first attempt to predict these
modifications in any species.

Because this strategy first involves the discovery of motifs
and because motifs have also been shown to have a direct
biological relationship to specific enzymes or enzyme families,
the benefits of enzyme-specific prediction are retained de-
spite having started with PTM data sets where no specific
modifying enzymes were known. In this approach, prediction
ability can go beyond the limitations of previous enzyme-
specific approaches because even completely novel motifs
for unknown enzymes (e.g. phosphorylation motifs with no
known kinase) can be used for prediction. In addition, by
discovering motifs within large organism-specific data sets,
most discovered motifs similarly contain large numbers of
supporting examples, and in contrast to other enzyme-spe-
cific approaches, this abundance of data allows predictions to
be made that are completely organism-specific. The ap-
proach described here is also an improvement over previous
enzyme-independent approaches because it provides users
with the actual extracted motifs used to make each predic-
tion, and this often allows for inference of the responsible
modifying enzyme even in the absence of actual enzyme-
specific data.

EXPERIMENTAL PROCEDURES

Data Harvesting—Data were obtained from several sources includ-
ing Swiss-Prot/UniProt (3) (version 54.3, October 2, 2007) down-
loaded from the ExPASy FTP site, PhosphoSite (2) (provided by Cell
Signaling Technology, Inc. as of September 18, 2007), PhosphoPep
(4) (as of December 16, 2007), Phospho.ELM (13) (version 7), and data
accompanying Smith et al. (23), Molina et al. (25), Yang et al. (26), and
Wang et al. (27). Custom Perl scripts were written to generate lists of
peptide sequences with known modifications from each database
(UniProt and PhosphoSite) or to automatically download peptides
from the Web sites (Phospho.ELM and PhosphoPep). These peptides
were ultimately reformatted as 15-mers centered upon the modified
residue and then used directly to derive training and cross-validation
data sets as described next.

Derivation of the Training and Cross-validation Data Sets—Training
and cross-validation data sets were derived from the various data-

2M. F. Chou, D. Schwartz, and G. M. Church, manuscript in
preparation.
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bases of known PTMs (as described above), and the background
proteomic sequences were derived from NCBI (National Center for
Biotechnology Information), IPl, SGD, and FlyBase Drosophila data-
bases. After grouping by organism and type of modification, each of
these groupings was processed as follows. (a) The background
database was converted to 15-mers centered on every residue rele-
vant to the modification type (i.e. all tyrosines for a tyrosine phospho-
rylation analysis, all lysines for an acetylated lysine analysis, etc.). (b)
The background data set was reduced by removing all foreground
peptide sequences to yield mutually exclusive foreground and back-
ground data sets. (c) The foreground 15-mer data set was reduced by
homology filtering as described below. (d) The foreground sequences
were randomized and divided into 10 equally sized groups. (e) The
background sequences were randomized and divided into 10
equally sized groups, and each was arbitrarily paired with a fore-
ground group resulting in 10 pairs of foreground/background se-
quences. (f) For a given pairj from 1 to 10, (i) all pairs except for pair
j was repooled with the other nine foreground and nine background
data sets into training foreground and training background data
sets, respectively, that excluded all peptides in pair j; (ii) these
repooled training foreground and training background data sets
were then used as input to motif-x to find motifs with the signifi-
cance parameters described below; (iii) the foreground of pair j was
then labeled as positive, and the background of pair j was labeled
as negative,® and scan-x was run on all of these labeled positive
and negative data sets; (iv) scan-x determined a score for each
peptide (as described below for any query sequence); (v) these
scores were subject to a series of fixed integer threshold values
from —100 to +99* to bifurcate the data for each threshold level
into those labeled positives and negatives that scored above each
threshold (i.e. the TPs and FPs for that threshold level) and those
labeled positives and negatives that scored below each threshold
(i.e. the FNs and TNs for that threshold level); and (vi) finally the size
of each of the four classes for each threshold level (TP, TN, FP, and
FN) was used to compute sensitivities and specificities (see Equa-
tions 2 and 3) for each fixed threshold for the test set j and its
mutually exclusive training set. (g) Step f was repeated 10 times,
once for each test pair j with its mutually exclusive pooled training
sets. (h) Finally for each of the 10 runs, the sensitivity and specificity
were averaged across each threshold value from —100 to +99 to
determine the expected performance of the method on unknown

3 It is impossible at this time to truly determine actual negative data
sets, and we have tried a number of approaches to this problem, but
ultimately any method is an overestimate of the number of actual
negatives. This is readily apparent based upon the fact that each new
mass spectrometry study reveals a significant number of new modi-
fications in each organism under study. Therefore, all specificity num-
bers are underestimates of the actual specificity and should not be
taken to be absolutely quantitative. Nevertheless they allow relative
comparisons between algorithms and parameter choices for a given
algorithm.

4 Empirical studies showed that increasing the stringency of the
so-called residual motif (the catchall motif for all peptides that cannot
otherwise be deconvoluted into a motif class) by adding a constant
offset of +30 to its threshold cutoff value yielded more specific
predictions than when using a threshold identical to that of the other
motifs. Therefore, the range of thresholds for residual motifs actually
ranged from —70 to +129, and the threshold for all other motifs
ranged from —100 to +99. Thus when interpreting data in supple-
mental Table 8, implicitly a row in the table for threshold value t should
really be considered as the threshold value t for all motifs except for
the residual motif for which the threshold value was instead set to
t + 30.

data sets for each organism and modification type and to derive a
receiver operating characteristic (ROC) curve (supplemental Table 8
and Fig. 3).

Homology Filtering—Existing PTM substrate databases contain
many homologous sequences. Such homologous sequences in
cross-validation data, although perhaps reflective of realistic se-
quences, would not give the most conservative estimates of sensi-
tivity and specificity in a cross-validation study because they can
behave as self-consistency data points and thereby increase appar-
ent algorithmic performance. Therefore, as a first step in preparation
of our training sets (prior to randomization and division into 10-fold
cross-validation sets) we removed presumptively homologous se-
quences that were more than 60% identical to another sequence in
the foreground data set. Note that it is not necessary to remove all
peptides that are similar but just enough of them to assure that the
remaining data set does not contain homologs after processing. For
instance, if two peptides are nearly identical but share no identity with
any other peptides in the data set, elimination of just one (not both)
will satisfy this requirement. The algorithm proceeds in a stepwise
manner by first eliminating sequences that were different from an-
other in exactly one position. By definition, each potential homolog is
found as two or more peptides, and the algorithm preferentially elim-
inates the sequence that is most similar to all other sequences in the
set and leaves the one(s) that is most different from all others in the
set. Elimination proceeds one peptide at a time, re-evaluating after
each peptide is removed. Once no further homologs of distance 1
remain, homologs of distance 2 are eliminated and so forth until all
peptides are different from one another in at least six positions.
Because peptides in this study were 15-mers, this roughly corre-
sponded to the remaining peptides having an identity level of <60%
(no more than nine of 15 residues being identical). We feel that this
identity level selects for peptides that are evolutionarily distant and
not prone to contamination of cross-validation data sets.

Running motif-x on the Data—To carry out the prediction proce-
dure as described in the text, each of the training data sets needed to
be deconvoluted into constitutive motifs using the motif-x algorithm.
This was accomplished using a prerelease version of the motif-x
version 2.0 Web site? using the following parameters: foreground
format, prealigned; central character, S, T, Y, or K (dependent on
analysis); width, 15; significance, 1e—10; and background database,
IPI human proteome, IPI mouse proteome, SGD yeast proteome, or
FlyBase Drosophila proteome (dependent on analysis). The fixed res-
idues of the motifs are those that have attained a user-defined level of
significance at a given position. A very stringent significance thresh-
old was used to ensure the validity of the extracted motifs (typically a
p value <1e—6 or in this study 1e—10). Following Bonferroni correc-
tion, this significance threshold corresponded to a p value <3e—8.

Sequence Logos—Values in the non-fixed positions of the motif are
also a function of probability of occurrence of each residue, and they
contribute to the weight of values of the PWM. This entire motif and
PWM can be visually represented in a novel sequence logo, which is
exemplified in Figs. 1-3 and supplemental Tables 1-7, that will be
available in motif-x version 2.0. These sequence logos have an intu-
itive interpretation in which residues above the horizontal axis are
overrepresented with respect to the background, and those residues
below the axis are underrepresented with respect to the background.
More significant residues are taller than residues that are less signif-
icant, and the most significant residues are placed closest to the
horizontal axis. Locked positions are shown as full height and are the
only residues shown for that position.

Residual Motifs—Another feature of motif-x version 2.0 is the in-
troduction of the “residual motif.” The residual motif is not a real motif,
but it has a PWM and accompanying logo representing the remainder
of peptides in the foreground data set that could not be deconvoluted
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into a discrete motif where at least one non-central residue/position
attained the specified significance level. Thus the PWM for the resid-
ual motif has only the central residue fixed and contains statistical
scores representing the residual peptides in all of the non-central
residues/positions in an exact analogy to the statistical representation
of peptides in the PWM of a real motif.

PWM Weights and Scoring a Sequence by scan-x—Each position/
residue score in the PWM is derived during the motif discovery
process using a prerelease of the next version of the motif-x program
and is approximately a log transformation of the binomial probability
of that residue occurring at that position k of N times given a back-
ground probability of p. Here k is the number of occurrences of that
residue at that position in all of the peptides of the foreground data set
that syntactically matched the fixed positions of the motif, N is the
total number of peptides in the foreground data set matching that
syntactic motif, and p is the empirical probability of that residue at
that position across all of the peptides in the background data set that
also exactly syntactically match the motif.

More precisely, to handle under- and overrepresentation of each
residue at each position, actually two binomial probabilities are com-
puted: the probability P,,.,, the binomial probability of k or more of N
occurrences of the residue at that position, and the probability P4
the binomial probability of k or less of N occurrences of the residue at
that position, both given the empirical background probability p.
These probabilities are combined into a log odds ratio to arrive at the
final log,o-transformed score for each possible residue at each non-
fixed position in the PWM.

Scoreposition, residue — _|Og1O(Pover/’Dunder) (Eq 1)

This scoring method was chosen for the following reasons. (j) It is
mathematically well behaved across the full set of values of k (0
through N), (i) it ranges from negative to positive values when a
residue is under- or overrepresented, respectively, (iii) it is 0 when
k/N = p (that is when a residue is neither under- nor overrepresented
at a given position), and (iv) it quickly approaches —10g;q(Poyer) OF
+10940(Punger) When k/N is even slightly higher or lower than p, re-
spectively, so it grossly approximates these values and gives the logo
representation of the PWM an intuitive interpretation as described
above.

To create a score for a potential hit in a particular query sequence
for a motif being scanned, first a syntactic match with the fixed
positions of the motif must be made. That is, each locked position of
the motif must exactly match corresponding residues in the query
seqguence. Then each actual position/residue of the query sequence is
used to look up the corresponding Score,qgition, residue IN the PWM of
the motif for each of the non-locked residue positions of the motif.
These individual scores (15 in this case) are then summed across the
entire motif width to arrive at the final score for the motif at that query
position. Fixed positions are assigned a value of 0.

Comparison with Other Algorithms—The scan-x prediction tool
was compared with three other Web-based phosphorylation predic-
tion tools: NetPhosYeast, Phosida, and Scansite. In the case of
NetPhosYeast, 2,000 random serine and threonine phosphorylation
sites from yeast, each of width 15, were uploaded to the server.
Additionally 2,000 random serine and threonine sites from the SGD
yeast proteome not known to be phosphorylated were uploaded
separately to serve as an approximation of the actual negatives in the
same way they were used to validate our method. Sensitivity was
computed as the total number of correctly identified phosphorylation
sites from the positive data set divided by the total positive data set
size (i.e. 2,000). Specificity was calculated as the total number of
negative sites that were not predicted to be phosphorylated divided
by the total negative data set size. To assess the Phosida tool, 1,345
random human and 793 random mouse serine and threonine phos-

phorylation sites were uploaded as a positive test set. Again an
approximation to actual negative data sets was provided by extract-
ing random serine and threonine sites not known to be phosphoryl-
ated from the human and mouse IPI proteomes. All positive and
negative peptides had a width of 15. To run Phosida at the highest
stringency a precision level of 100% was selected prior to running the
software. Sensitivity and specificity were calculated as described for
NetPhosYeast. Scansite was run using all available kinase position-
specific scoring matrices on the same human positive and negative
data sets used for the Phosida validation. In the case of serine and
threonine phosphorylation, Scansite was run at “high stringency.”
Again sensitivity and specificity were calculated based on the total
number of correctly identified positive and negative hits divided by the
total data set size (a correctly identified site needed to match one or
more serine or threonine kinase profiles). To compare our tyrosine
phosphorylation results to that of Scansite, 866 random human tyro-
sine phosphorylation sites and 866 random human tyrosine sites not
currently known to be phosphorylated (all of width 15) were used as
actual positive and an approximation of actual negative data sets,
respectively. The uploaded data were then run at “medium strin-
gency.” To be considered a positive match, a site needed to match
one of the tyrosine kinase profiles. Sensitivity and specificity were
calculated using the same procedure as for the serine and threonine
data sets.

Analysis of Newly Published Data Sets—The analysis of newly
published phosphorylation data from Albuquerque et al. (5) in yeast
and Zhai et al. (8) in fly was accomplished by taking only sites
reported in those studies that had a high degree of localization
confidence (i.e. PLscore > 7 in Albuquerque et al. (5) and Ascore > 13
in Zhai et al. (8)). Each phosphorylation site was extended from the
appropriate proteome to contain at least seven residues upstream
and downstream of the phosphorylation site. Phosphorylation sites
that were already included in our total phosphorylation training data
set for yeast and fly were removed. Presumed negative data in-
cluded all those serine and threonine sites in the respective pro-
teomes that were not observed to be phosphorylated (either in our
training data or in the newly published studies). The scan-x program
was then run on each of the data sets with both positive and
negative data using all of the motifs shown in supplemental Tables
1 and 2. The scan-x threshold used for the yeast data was 5.2 for all
motifs with the exception of the residual motifs, which had a thresh-
old of 35.2. For the fly data, the threshold used was 7.1 for all motifs
with the exception of the residual motifs, which had a threshold of
37.1. Sensitivity and specificity were calculated according to Equa-
tions 2 and 3.

Web Site Availability—The motif-x Web site version 2.0, which
includes some of the features used in this study, will be available for
non-commercial and academic use. Details on other features of mo-
tif-x version 2.0 and the use of the new scan-x program are described
elsewhere in more detail.? The ability to scan proteins of interest using
motifs discovered using the methods in this study will be made
available from the motif-x Web site and may be periodically updated
as new training data sets become available.

Programming Details—The motif-x Web site, the core engine, and
supporting programs were all written in the Perl programming lan-
guage. Certain computationally intensive or specialized portions of
the system such as the computation of binomial probabilities, the
creation of graphical motif logos, and homology filtering were par-
tially written in the C programming language. The motif-x Web site
is hosted on a large multinode Linux and PC-based computer
cluster hosted by Harvard Medical School’s Research Information
Technology Group.
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TABLE |
Post-translational modification training data statistics

Organism and data origin?

Modification type

Total number of unique modification sites”

Saccharomyces cerevisiae
Swiss-Prot (99.7%, 99.2%)
Phospho.ELM (0.8%, 0.3%)

Swiss-Prot (99.8%, 99.3%)

Phospho.ELM (0.7%, 0.2%)
Drosophila melanogaster

PhosphoPep (100%, 100%)

PhosphoPep (100%, 100%)
Mus musculus

PhosphoSite (84.5%, 45.2%)

Swiss-Prot (48.6%, 12.2%)

Smith et al. (4.7%, 2.9%)

Phospho.ELM (3.4%, 0.3%)

PhosphoSite (85.2%, 47.2%)
Swiss-Prot (44.7%, 11.9%)
Smith et al. (2.9%, 2.4%)
Phospho.ELM (6.2%, 0.6%)
Homo sapiens

PhosphoSite (78.7%, 25.0%)
Swiss-Prot (64.0%, 17.7%)
Phospho.ELM (11.2%, 2.2%)
Wang et al. (1.6%, 0.8%)
Molina et al. (8.8%, 0.1%)
Yang et al. (3.3%, 0.03%)

PhosphoSite (86.0%, 38.7%)
Swiss-Prot (46.4%, 9.9%)
Phospho.ELM (14.1%, 2.5%)
Wang et al. (1.3%, 0.7%)
Molina et al. (8.3%, 0.1%)
Yang et al. (4.7%, 0.1%)

PhosphoSite (98.6%, 87.0%)
Swiss-Prot (9.6%, 0.8%)
Phospho.ELM (4.8%, 0.5%)
Wang et al. (0.05%, 0.03%)
Molina et al. (0.7%, 0.01%)

PhosphoSite (100%, 100%)

Serine phosphorylation

Threonine phosphorylation

Serine phosphorylation

Threonine phosphorylation

Serine phosphorylation

Threonine phosphorylation

Serine phosphorylation

Threonine phosphorylation

Tyrosine phosphorylation

Lysine acetylation

3,882 (3,808)

833 (814)

8,849 (8,607)
2,485 (2,459)

6,887 (6,410)

1,617 (1,523)

11,741 (10,640)

3,028 (2,815)

9,524 (8,662)

2,962 (2,737)

2 Values in parentheses indicate the percentage of total sites contained within the given data set followed by the percentage of total sites
unique to a given data set. Percentages of total sites from different databases can add up to >100%, and percentages of unique sites will total
=100% because the same peptides can be found from multiple data sources. Citations are as follows: Smith et al. (23), Molina et al. (25), Yang

et al. (26), and Wang et al. (27).

b values in parentheses indicate number of unique modification sites following the homology filtering procedure.

RESULTS

Overall Strategy—The first step in any protein post-trans-
lational modification prediction strategy involves the estab-
lishment of training data sets that serve as the foundation
upon which all future predictions will be made. In an effort to
be as comprehensive as possible, training data were har-
vested from a wide variety of sources including Swiss-Prot
(3), Phospho.ELM (13), PhosphoPep (4), and PhosphoSite
(2), which yielded a total of 51,808 unique sites of modifi-
cation split up among four commonly researched species
(yeast, fly, mouse, and human) and two major modification
types (phosphorylation and acetylation). In addition, several
large scale studies whose data sets were not yet incorpo-

rated into these other data sets were used as sources (23,
25-27). Specific statistics on the training sets are provided
in Table I.

The overall prediction methodology is summarized in Fig. 1.
Training data sets are first separated based on organism and
modification type as shown in Table I. The motif-x algorithm is
then run on each of these data sets with a proteomic back-
ground and at a stringent significance threshold to extract
only high confidence motifs (p value <1e—10, which is a
Bonferroni-corrected equivalent of the already highly signifi-
cant p value <3e—8; see also supplemental Tables 1-5). A
whole proteome sequence data set on which to make predic-
tions is then selected for searching by scan-x using these
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cxxmotif-xxx:

Input Output

Acetylation
Phosphorylation

Foreground
data

=S can-=xxx>»

4 A

Proteomic FASTA data set

>Protein 1
MSTARTENPVIMGLSSQEGQLRGPVKASAGPGLGG
TPPNPQLNQLKNTSTINNGTPQOAQSMAATIKPGD
DWKKTLKLPPKDLRRKTSPVTSTKGNEFEDYCLKR
ELLMGIFEMGWEKPSPIQEESIPIALSGRDILARA
KNGTGKSGAYLIPLLERLDLKKDNIQAMVIVPTRE
LALQVSQICIQVSKHMGGAKVMATTGGTNLRDDIM
RLDDTVHVVIATPGRILDLIKKGVAKVDHVOMIVL
DEADKLLSQDFVQIMEDI ILTLPKNRQILLYSATF
PLSVOKFMNSHLQKPYEINLMEELTLKGVTQYYAY
VTERQKVHCLNTLFSRLQINQSIIFCNSSQRVELL
AKKISQLGYSCFYIHAKMROEHRNRVFHDFRNGLC
RNLVCTDLFTRGIDIQAVNVVINFDFPKLAETYLH
RIGRSGRFGHLGLAINLITYDDRFNLKSDEEQEGT
EIKPIPSNIDKSLYVAEYHSEPAEDEKP

>Protein 2
MGPLWGRQKQHQGCLGKIGGHGAEYGAEALERMFA
SFPTTKTYFPHFDVQPGSPQVKGHGKKVADALANA
AGELDDLPGALSALSDLHAHKLRVDPVNFKLLSHC
LLVTLASHHPADFTPAKRASLDKFLASVSTVLTSK
YR

>Protein 3
DLEEQLSDEEKVRIAAKFIIHAPPGEFNEVENDV

Background
data

RLLLNNDNLLREGAAHAFAQYNLDQFTPVKIEGYE
RORLITEHGDLGNGKFLDPKNRICFKFDHLRKEAT
DPRPYEAENAIESWRTSVETALRAYVKEHYPNGVC
TVYGKKVDGQOTIIACIESHQFORKNFWNGRWRSE
WKETVTPSTTQVVGILKIQVHYYEDGNVOLVSHKD
IQDSQEVSNEVQTAKEFIKIVEARENEYQTATSEN
YQTMSDTTFKALRROLPVTRTKIDWNKPLSPKIGK
EMONA

>Protein 25000

MSAPLGPRGRPAPTPPASQPPPQPEMPDLSHLTEE
ERKIILAVMDRQKKEEEKEQSVLKIKEEHKAQPTQ
WKRFSGITELVNNVLOPQQKQPNEKEPOTKLHQQF
EMYKEQVKKMGEESQEQQEQKGDAPTCGICHKTKE
ADGCGHNCSYCQTKFCARCGGRVSLRSNKVMWVCN
LCRKQQEILTKSGAWFYNSGSNTLQQPDQKVPRGL
RNEEAPQEKKAKLHEQPQFQGAPGDLSVPAVEKGR
AHGLTRQDTIKNGSGVKHQIASDMPSDRKRSPSVS
RDQNRRYEQSEEREDYSQYVPSDGTMPRSPSDYAD
RRSQREPQFYEEPGHLNYRDSNRRGHRHSKEYIVD
DEDVESDEEEEQRREEEYQARYRSDPNLARYPVKP
QPYEEQMRIHAEVSRARHERRHRDVSPANAELEDS

Predicted modification
sites

>Protein 1

PVIMGLSS*QEGQLRG
AGPGLGGT*PPNPQLN
KDLRRKTS*PVTSTKG
DDRENLKS*DEEQEGT

>Protein 2
HFDVQPGS*PQVKGHG
FTPAKRAS*LDKFLAS

>Protein 3
YERQRLIT*EHGDLGN
SHKDIQDS*QEVSNEV
IDWNKPLS*PKIGKEM

.

.

.
>Protein 25000
PRGRPAPT*PPASQPP
VKKMGEES*QEQQEQK
ERRHRDVS*PANAELE
REAQKRSS*YPQRTSN
VDDEDVES*DEEEEQR
RSYSMERT*PEKQKRS
GGKMRPVS*PSSSEEE
PTQWKREFS*GITELVN

RISLLRMDRPSRQRSVSERRAAMENQRSYSMERTP
EKQKRSSYPQRTSNHSPPTPRRSPIPLDRPDMRRA
DSLRKQHHLDPSSAVRKTKREKMETMLRNDSLSSD

ESVRPPPPRPHKSKKGGKMRPVSPSSSEEELAS
TPEYTSCDDV

Fic. 1. Overall schematic of the prediction methodology. Starting with a sequence-based input data set of modification sites from any
given organism, the motif-x algorithm is used to deconvolute the data into constitutive motifs. These motifs can then be used as input to the
scan-x program, which scans the motifs against any proteomic FASTA-formatted data set and scores each hit. Those sequences exceeding
a selected stringency threshold are output as potential modification sites. The modification sites are denoted with an asterisk, and the “fixed”

positions in the motifs used for scan-x are highlighted here in blue.

discovered motifs. All subsequences within the proteomic
data sets that match one or more of the motifs are scored by
scan-x. Residue heights in the motif logos are a function of
their binomial probabilities, and scoring a sequence simply
involves taking the sum of residue heights within the se-
quence based on the appropriate residues and positions in
the corresponding motif (see Fig. 2 and “Experimental Proce-
dures”). Scores are indicative of the degree of the match of a
sequence with the training set used to derive the motif, and
sequences are deemed “predicted substrates” for the modi-
fication in question if they meet or exceed a particular score
threshold.

Cross-validation—When carrying out a procedure to predict
additional modification sites in a proteome of interest, it is
necessary to fairly assess the degree of confidence one may
have in the results. Typically this can be accomplished
through a cross-validation methodology in which a certain

percentage of the training data is set aside as a test data set
and used to compute the sensitivity and specificity of the
prediction procedure. Here we used a 10-fold cross-valida-
tion strategy in which the total positive and negative training
set was subdivided into 10 training and test sets such that
each test set was mutually exclusive from its associated
training set. To ensure that sequences in the cross-valida-
tion data sets were not homologous to sequences in the
training sets (resulting in unfairly advantageous prediction
results) the training data sets were first filtered to remove all
sequences with greater than 60% identity (see “Experimen-
tal Procedures”).

Negative data were obtained by selecting all of those resi-
due-specific sites in the appropriate proteome not found in
our positive training data (e.g. negative data for serine and
threonine phosphorylation in the yeast proteome comprised
all serine and threonine residues in the proteome not included
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FiG. 2. Sample scan-x scoring procedure for the TUS1 protein by the RXXSXXS phosphorylation motif. Starting with a motif obtained
as output from the motif-x program (e.g. RXXSXXS) and a sequence to be scanned (e.g. TUS1), the scan-x program first identifies syntactic
matches (i.e. protein regions matching the fixed positions in the motif). The PWM formulation of the sequence logo is then used to score the
matching segment with the total scan-x score being equal to the sum of the scores for the residues at each position. In this example, 15
positions are scored because the initial RXXSXXS motif had a total width of 15 (including the three fixed positions that are given scores of 0).
Peptide scores may be converted to expected false positive rates by querying the appropriate cross-validation ROC curve data. Here serine
241 yielded a scan-x score of 8.546, whereas serine 270 yielded a scan-x score of 1.261. The expected false positive rates of these two serines
are 1.8 and 8.9%, respectively. Note that RXXSXXS is a novel phosphorylation motif discovered by the motif-x algorithm and that serine 241
was recently confirmed to be a true phosphorylation site in the literature (42).

in the positive training data). The assumption that all residues
except those currently known to be modified are actually
negative is highly conservative, and were it in fact true, it
would obviate the need for a prediction methodology alto-
gether. As such, our calculated false positive rate is guaran-
teed to represent an overestimate of the false positive rate of
the methodology (or equivalently an underestimate of the
specificity of the methodology).

motif-x was run on each of the 10 training sets (with the
actual positive data as the foreground and the presumed
negative data as the background), and extracted motifs were
scanned against the mutually exclusive test sets to make
predictions. For each cross-validation run, and for each of 200
integer threshold values (ranging from —100 to +99), the
sensitivity and specificity of the method was calculated ac-
cording to the following formulas.

TP

Sensitivity = TP+ EN (Eqg. 2)
TN

Specificity = INTEP (Eqg. 3)

Average values of sensitivity and specificity at each
threshold were then calculated based on the data obtained
from the 10 cross-validation sets. Plotting these data on
coordinate axes resulted in the standard ROC curves shown
in Fig. 3 for each of the modification data sets. Converting
the sensitivity and specificity values provided in the ROC
curve into scoring thresholds thus allows the prediction
procedure to be optimized for a user-defined stringency
(see supplemental Table 8 for raw ROC curve data and a
threshold conversion chart).

Molecular & Cellular Proteomics 8.2 371


http://www.mcponline.org/cgi/content/full/M800332-MCP200/DC1

Predicting Protein Modifications

1
0.9
0.8
0.7
0.6 v!
I F 4
IS > = ® x
[}
a oL X
_4;" 0.5 ] ® X
: e
] X
0.4-—"! ° ®yYecast serine and threonine phosphorylation [
a X
% .x Brly serine and threonine phosphorylation
0.3 1 ]
t X
o AMouse serine and threonine phosphorylation
0.2 - ®Human serine and threonine phosphorylation [
@ oX
o« % . .
Human tyrosine phosphorylation
0.1 ]
®Human lysine acetylation
: I S —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 - Specificity

Fic. 3. ROC curves for yeast, fly, mouse, and human modification data sets. These curves show the trade-off between prediction
sensitivity and specificity for each of the data sets analyzed in this study. Each curve was computed using 10 unique training set/test set
combinations according to the cross-validation procedure outlined in the text. Each curve thus represents the average sensitivity and
specificity for threshold values across 10 cross validation runs. The data points shown for each ROC curve correspond to sensitivity and
specificity values calculated at scan-x stringency thresholds varying between —100 and +99. Raw data for these curves are provided in

supplemental Table 8.

Although other studies have reported the accuracy (Equa-
tion 4) of their prediction strategies, we have opted to refrain
from reporting this value because it represents a weighted
average of the sensitivity and specificity and therefore can
change with the sizes of the data sets used. In our case, the
proteome scale size of our negative data set gives us values
for accuracy that mimic specificity values almost exactly (i.e.
when specificity is 95%, accuracy is also ~95%). Thus, ac-
curacy values can be arbitrarily large or small because nega-
tive data set size can vary from one study to another. As such,
we believe that accuracy is not an appropriate metric for
comparison.

TP + TN
TP+ FN+ TN+ FP

Accuracy = (Eqg. 4)

ROC curve analyses indicated that for serine and threonine
phosphorylation at 95% specificity sensitivities vary from 32
to 38%. In the case of tyrosine phosphorylation and lysine
acetylation only 16 and 18% sensitivity is achieved at 95%
specificity. Although these sensitivities may appear low, they
nevertheless translate into tens of thousands of as yet uni-
dentified high confidence post-translational modification pre-
diction sites in each of the analyzed organisms (Table Il). Even
when specificity is raised to the 99% level, over 80,000 novel
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TaBLE Il
Number of novel proteomic predictions made at the 95 and 99%
specificity levels

Number of unique high
confidence predictions
(95/99%)

Organism and
modification type

S. cerevisiae
Serine and threonine
phosphorylation
D. melanogaster
Serine and threonine
phosphorylation
M. musculus
Serine and threonine
phosphorylation
H. sapiens
Serine and threonine
phosphorylation
Tyrosine phosphorylation
Lysine acetylation

22,919/4,697

48,293/8,936

97,488/18,941

104,349/24,514

283,900/5,521
54,436/18,392

total prediction sites can still be made. At best, standard
tryptic digestion followed by tandem mass spectrometry re-
sults in protein coverages between 80 and 90% on a non-
complex sample with more standard protein coverages in the
20-40% range for a complex sample (9, 10, 28). If one also
takes into account the fact that mass spectrometers are con-
centration-sensitive instruments and that many interesting
biological post-translational modification events occur only
transiently or on low abundance proteins, it is clear that a
significant portion of these sites are unlikely to be detected
using standard high throughput techniques. In silico predic-
tions may be the only practical way to find many of these
modification sites.

Comparison with Other Prediction Algorithms—Compari-
son of the prediction methodology presented here with two
recently published tools aimed at phosphorylation prediction
based on large scale data indicates a substantial improve-
ment in specificity and sensitivity. NetPhosYeast is an artificial
neural network-based serine and threonine phosphorylation
predictor designed specifically for yeast (18). When applied to
positive and negative yeast data used for our own cross-
validation, NetPhosYeast achieved a sensitivity of 93.7% with
a specificity of 39.2%. The low specificity of NetPhosYeast
coupled with its single stringency level makes it a difficult tool
to use for the experimentalist seeking to identify phosphoryl-
ation sites with a low false positive rate.

Phosida is another recently published phosphorylation pre-
diction tool aimed at human and mouse serine and threonine
phosphorylation prediction using a support vector machine
strategy (19). When tested against a sampling of positive and
negative sites from our human serine and threonine cross-
validation data set it achieved sensitivity and specificity values
of 12.2 and 97.3%, respectively. These values represent the
Phosida algorithm being run at its maximal stringency. By
comparison, our scan-x approach achieved a sensitivity of

23.3% at an equivalent specificity of 97.3%. In the mouse
data set, Phosida fared somewhat better, achieving a sensi-
tivity of 22.1% at a specificity of 97.1% compared with the
scan-x sensitivity of 27.2% at the equivalent specificity value.

Note that some of our test peptides were likely found in the
NetPhosYeast and Phosida training sets, and as such, our
cross-validation data sets may not be as truly challenging as
they ideally could be. The sensitivity bias toward these meth-
ods suggests that we are also somewhat underestimating the
relative improvement of scan-x over these methodologies.

In addition to the aforementioned tools that aim to predict
phosphorylation sites based on large scale mass spectrome-
try data we also chose to compare our prediction results with
the Scansite program, which uses position-specific scoring
matrices (PSSMs) derived experimentally for individual ki-
nases to make phosphorylation predictions (16). To date,
Scansite has PSSMs for 26 kinases, making it one of the most
widely used and versatile tools for phosphorylation prediction.
Although Scansite is not organism-specific and is meant to be
used in a kinase-specific manner, running Scansite with all 26
PSSMs gives users a global view of protein phosphorylation.
When applied to our human serine and threonine phospho-
rylation test sets, Scansite achieved a sensitivity of 13.2% and
a specificity of 97.6% compared with the scan-x sensitivity of
21.4% at the equivalent specificity.

We were also able to compare our human tyrosine phos-
phorylation predictions against the Scansite tyrosine kinase
prediction tool. At medium stringency, Scansite achieved a
sensitivity of 5.1% and a specificity of 97.5%. In comparison,
scan-x yielded a 9.1% sensitivity at the same specificity level.
High stringency could not be used in Scansite because the
resulting sample size was too small to accurately measure
specificity. Because several of the motifs discovered in these
proteome wide data sets do not correspond to those of any
known kinase, this lower sensitivity of Scansite may be due in
part to a lack of complete kinase-specific data and not to the
Scansite algorithm itself.

Performance under Varying Biological Conditions—During
preparation of this manuscript, two additional phosphoryla-
tion studies were published that nearly doubled the number of
known phosphorylation sites in yeast (Albuquerque et al. (5))
and fly (Zhai et al. (8)). These yeast and fly studies resulted in
3,579 and 6,671 novel phosphorylation sites, respectively,
that were not included in our total training sets. The novel
phosphorylation sites contained within these studies repre-
sented challenging data sets on which to test the predictive
capacity of our approach because the sites were extracted
from cells grown under specific conditions or stimuli that were
not reflective of the conditions under which our complete
yeast and fly training sets were obtained.

The Albuquerque et al. (5) study investigated phosphoryla-
tion sites carried out under DNA damage conditions by treat-
ing cells with methyl methanesulfonate, an agent known to
activate a number of damage-specific kinase pathways. In
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fact, differences in kinase activation between the Albuquer-
que et al. (5) study and our training data set can be confirmed
by inspecting those motifs that were extracted from each of
those data sets (compare supplemental Tables 1 and 6). Of 25
total motifs that were extracted from both data sets, only 11
motifs were shared between both data sets. Interestingly the
Albuquerque et al. (5) data set contained several unique and
novel motifs including SXXS, SXXN, SXP, and SF (phospho-
rylated residues are underlined) that are likely to be involved in
the DNA damage pathway (the SF motif was in fact recently
hypothesized to be a substrate specificity for the kinase
Rad53, which is known to become activated in response to
methyl methanesulfonate treatment in yeast (29)).

The Zhai et al. (8) study, which was carried out on Drosoph-
ila embryos, also investigated phosphorylation events that
differed from our training data in which phosphorylation was
observed in Drosophila Kc167 cells (4). As in the yeast data
set, differential kinase activity is noticeable with the majority of
the motifs extracted found solely in either the Zhai et al. (8)
data or in our fly training set (compare supplemental Tables 2
and 7). Some interesting novel motifs that were extracted
exclusively from the Zhai et al. (8) study include RSP, KSP,
RTP, KTP, NXS, RXXSXXS, SXXSL, RRS, RXXTP, SXSP,
SXXS, SXXS, and SXXXSP.

Despite the unique conditions under which the Albuquer-
que et al. (5) and Zhai et al. (8) studies were run, the scan-x
algorithm was still able to predict ~27% of the phosphoryla-
tion sites from each of the studies at a 95% specificity rate.
More specifically, using the thresholds derived for 95% spec-
ificity (see supplemental Table 8) scan-x predicted 27.7% of
the phosphorylation sites in the Albuquerque et al. (5) study
with an expected specificity of 94.2%. Similarly scan-x pre-
dicted 27.1% of the phosphorylation sites in the Zhai et al. (8)
study with an expected specificity of 95.3%. Although these
sensitivity values represent a modest decrease from the ex-
pected sensitivity values of 37.7% for yeast and 31.8% for fly,
given the unique nature of these new data sets, they in fact
serve to highlight the robustness of the prediction procedure.
In time, as new protein modification studies are added to our
training sets with a wide variety of experimental conditions,
we expect that the discrepancy between our predicted sen-
sitivity and actual sensitivity to approach 0.

scan-x Predictions— Application of the aforementioned pre-
diction strategy on the full training data set resulted in a total of
81,001 predicted modification sites at the 99% specificity level
(summarized in Table Il and available upon request). Literature-
based corroboration of our predictions were difficult to obtain
because the overwhelming majority of known phosphorylation
sites have come from large scale mass spectrometry studies
and were thus already included in our training set. Following are
a few instances, however, where it was possible to independ-
ently confirm these predictions in the literature.

For example, in yeast, serine 191 of the Sic1 protein, serine
77 of the Fip1 protein, and both serines 133 and 134 of the

Grx4 protein have all been experimentally verified as either in
vivo or in vitro kinase substrates (30-32) and were all pre-
dicted phosphorylation sites by scan-x. In fly, scan-x pre-
dicted two phosphorylation sites on the slowpoke channel-
binding protein, Slob. The first of these sites on serine 54 was
detected using the RXXS motif that has been verified to be a
true phosphorylation site involved in regulating the kinase
activity of the Slob protein (33).

In mouse, a number of phosphorylation predictions could
be supported by sites shown to be phosphorylated on homol-
ogous human proteins, including serine residues 28, 98, and
637 in RalBP1, a protein shown to be involved in cancer cell
proliferation. (scan-x also predicts a patch of serine phospho-
rylation sites on RalBP1 between residues 541 and 545; how-
ever, these residues lie in a region of the protein that upon
tryptic digestion would create a peptide too large to be se-
quenced using standard tandem mass spectrometry meth-
ods.) Additionally serine residues 602 in mouse protein BRD4
(bromodomain-containing 4) and 906 in mouse protein Delan-
gin have both been shown to be phosphorylated on homolo-
gous residues in their respective human counterparts (25, 34).
Increased confidence in these predictions is gained from the
fact that no human data were used in the training set for
these predictions, yet the sequences of these predicted tar-
gets are nearly identical to their homologous human se-
quences in the vicinity of the putative PTM.

In the human data set, our phosphorylation prediction of
serine 419 on CCDC6 (coiled coil domain-containing protein
6) was very recently verified by a large scale tandem mass
spectrometry study whose data were not included in our
training set (35). We were also able to validate several tyrosine
phosphorylation predictions in the human data set, including
tyrosine 348 on PSD-93 (postsynaptic density protein 93) in
which the homologous site has been identified as the primary
site of Fyn phosphorylation in mouse (36). Similarly of a total
of 24 tyrosine residues in the CENTDS3 protein (centaurin 83),
three were predicted to be phosphorylation sites by scan-x.
Two of these sites have been verified in the literature (Tyr-
1403 by homology with mouse and Tyr-1408 by homology
with mouse and more recently by mass spectrometry in hu-
man) (2, 37). Finally scan-x also correctly predicted the phos-
phorylation of tyrosine 277 in TFII-l, a multifunctional tran-
scription factor involved in the regulation of cell proliferation
and whose defect contributes to Williams-Beuren syndrome
(38, 39).

We were unfortunately unable to find independent litera-
ture-based evidence for our acetylation predictions be-
cause prior to the PhosphoSite data set only several dozen
human non-histone acetylation sites were known. To illus-
trate this point, a PubMed search at the time of preparation
of this manuscript for the phrase “lysine acetylation” came
up with only 90 hits in the literature, whereas a similar
search for the phrase “tyrosine phosphorylation” came up
with 16,125 hits.
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Analysis of Phosphorylation and Acetylation Motifs—In ad-
dition to prediction of modification sites, this study also pro-
vided a unique opportunity to compare independently derived
phosphorylation motifs across a wide range of organisms
because extraction of these motifs was already carried out as
a first step in the prediction procedure (Fig. 1 and supplemen-
tal Tables 1-5). As can be expected, a large proportion of
these motifs correspond to the motif signatures of well known
protein kinases. These data provide strong evidence for the
conservation of kinase specificity throughout evolutionary his-
tory. Notable examples that were found in at least three of the
four species examined in this study include the motifs RRX(S/
T), (S/T)DXE, PX(S/T)P, and (S/T)PX(K/R) corresponding to the
consensus sequences for PKA, casein kinase Il (CK Il), MAPK,
and cyclin-dependent kinase (CDK), respectively. Perhaps
more interesting, however, are those motifs that were inde-
pendently extracted in the data sets for different organisms
yet have no corresponding kinase known to specifically phos-
phorylate such a sequence. These include RXXSXXS (ob-
served in yeast, mouse, and human), RXXSP (observed in fly,
mouse, and human), RSXS (observed in yeast, mouse, and
human), TPP (observed in fly, mouse, and human), and
SPXXXX(K/R) (observed in fly and human). Inspection of the
sequence logos for each of these motifs reveals strong evo-
lutionary conservation of residue preferences in the non-fixed
motif positions of the PWMs. For example, the TPP motif
shows preference for basic residues at the —3 position,
whereas the RXXSXXS motif shows preference for hydropho-
bic residues at the +1 position. The similarity of the sequence
logos across species also validates the use of these PWMs for
post-translational modification prediction.

Table Il outlines all of the motifs that were extracted from
two or more of the organismal data sets. The table only
includes those motifs that were exact matches across the
sets despite the fact that several additional groupings could
likely be made through examination of the sequence logos
(compare, for example, motif 1.01 in both supplemental Ta-
bles 3 and 4).

The large magnitude of the PhosphoSite database allowed
us an unprecedented opportunity to deconvolute the human
tyrosine phosphorylation data set into 16 motifs (supplemen-
tal Table 5). A majority of these motifs exhibited known ca-
nonical features of many tyrosine kinases including acidic
character surrounding the phosphorylation site (especially at
position —3) and proline and/or hydrophobic residues at the
+3 position. However, several motifs such as KXXY (a novel
motif), which did not fit this standard profile, and NPXY (a
known ligand for a number of phosphotyrosine-binding do-
mains) were also extracted.

Although previously fewer than 150 lysine acetylation sites
were known in the human proteome, the PhosphoSite data-
base has increased this number ~20-fold using proprietary
methods, enabling us to computationally extract acetylation
motifs for the first time (Fig. 4). Extracted motifs include KK,

TaBLE Il
Identical motifs found in at least two of the four serine and threonine
phosphorylation data sets using the motif-x algorithm
PKG, protein kinase G; G-CK, Golgi casein kinase; CaMK I,
calcium/calmodulin-dependent protein kinase II.

. Potential Found Found Found Found in
Motif? ) . . .
kinase(s) inyeast infly in mouse human
SP Pro-directed + + + +
TP Pro-directed + + + +
RRXS PKA + + + +
RRXT PKA + + — —
RXS PKA + + + +
KXXS PKA + + — +
KRXS PKA — + - +
RXXS PKA/CaMK I + + + +
RXXT PKA/CaMK I + + + +
RKXS PKA/PKG + + — —
RXXXS PKG + + - —
PXSP MAPK - + + +
PXTP MAPK — + + +
SPXR CDK - - + +
SPXK CDK - + - +
SXE G-CK — — + +
SDXE CKI + + + +
TDXE CKll - - + +
SDXD CK + + + +
SEXE CKI + - + —
SXXE CKll + - - +
SDDE CK — + - +
SDXEXE CKII - - + +
SXDE Novel/CK Il - + + +
DS Novel/CK Il — + + —
DSEXE Novel/CK Il - - + +
SXXS Novel/CK | - - + +
TPP Novel - + + +
RXXSP Novel — + + +
RSXS Novel + - + +
RXXSXXS Novel + — + +
SPXXXXK Novel - + - +
GS Novel - + + —

2 Phosphorylated residues are underlined.

KR, KF, KY, KXF, GK, KXXXK, and KXXK. Inspection of sev-
eral of the motifs in Fig. 4 suggests a preference for glycine
and lysine in the residues immediately surrounding the acety-
lation site as well as aromatic residues at the +1 position.
These motifs may represent differences in acetyltransferase
enzyme specificities. For example, a gene ontology analysis
of proteins bearing the KY acetylation motif indicated a sig-
nificant overenrichment of mitochondrial proteins, suggesting
that a unique acetyltransferase with a preference for tyrosine
at the +1 position is active in the mitochondrial compartment
(data not shown). The motif results presented here are con-
sistent with the general residue preferences adjacent to
acetylation sites found in a recent survey of acetylation in the
mouse proteome (40).

Certain similarities exist between the tyrosine phosphoryl-
ation and lysine acetylation data sets. First, despite the large
size of both of these data sets (n = 9,524 and n = 2,962
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# Serine Motifs Motif Foreground | Foreground | Background | Background Fold
Score Matches Size Matches Size Increase
.1 -...... K.F..... 34.60 296 2962 32099 706181 2.20
N KK...... 36.93 417 2666 54602 674082 1.93
3.0 ..., GK....... 28.04 292 2249 40238 619480 2.00
4.0 -...... K...K 19.01 267 1957 44385 579242 1.78
5.0 «...... KR...... 16.98 202 1690 33861 534857 1.89
6.0 -...... KY...... 18.60 115 1488 15067 500996 2.57
I K..K 12.48 184 1373 37468 485929 1.74
8. ....... KF...... 11.33 92 1189 15760 4484061 2.20
9. ..., Koo, 0.00 1097 1097 432701 432701 1.00

ﬁﬁp IVES

TOELEEY  LEhEet

o

%:—:
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Fic. 4. Human acetylation motifs and their corresponding sequence logos extracted from the PhosphoSite database. The database
contained 2,962 unique actual acetylation sites. Running motif-x on these sites results in a deconvolution of the data into eight motif groups
plus a residual motif (group 9). Sequence logos in which the heights of the residues are approximately proportional to their binomial
probabilities are shown for each corresponding motif. The residual motif group contains all of those sites that were not able to fall into one of
the other motif classes and from which another significant motif could not be found (see “Experimental Procedures”).

unique sites for the tyrosine phosphorylation and lysine acety-
lation data sets, respectively), the number of motifs extracted
was relatively small compared with comparably sized serine
and threonine phosphorylation data sets. Second, the ex-
tracted motifs from these data sets also revealed a lack of
specificity (i.e. contained fewer fixed positions) compared
with the serine and threonine phosphorylation results. Finally
the proportion of sequences that could not be deconvoluted
into a motif class (which is referred to as the residual) was
substantially higher in the tyrosine phosphorylation and lysine
acetylation data sets compared with the serine and threonine

phosphorylation data sets. Taken together, these findings
suggest either that tyrosine kinase and lysine acetyltrans-
ferases are fairly nonspecific or that information beyond local
primary structure may be necessary for their specificities. This
finding is consistent with the decreased ROC curve perform-
ance on both of these subsets (Fig. 3).

DISCUSSION

As our understanding of the role played by post-transla-
tional modifications in all aspects of cellular biology continues
to grow at a fast pace, tools for the prediction of such sites will
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become increasingly valuable especially in hypothesis-driven
studies. For example, in a typical 500-amino acid human
protein, ~60 serine and threonine residues can be expected.
Experimentally testing each of these sites for phosphorylation
is currently time-consuming and expensive. Thus, a predictive
strategy that can reduce the number of testable sites to any
degree would be beneficial to the researcher. Although mass
spectrometry has been the enabling technology for our pre-
dictive tool, its current inability to achieve full protein coverage
and its likelihood of missing labile or low abundance modifi-
cation sites necessitates alternate strategies to uncover the
complete protein “modify-ome.”

The data presented here represent a unique approach to
the prediction of protein post-translational modifications from
large scale data sets that builds upon the motif-x algorithm
that extracts motifs from data sets of known PTMs. This
research represents a first step toward the goal of high spec-
ificity and sensitivity post-translational modification prediction
and uses a simple yet effective approach. The scan-x algo-
rithm, using only sequence information immediately adjacent
to the modification site (particularly for serine and threonine
phosphorylation), was able to make a large number of predic-
tions at very high specificity, reinforcing the importance of
local residues in the modification process. Nevertheless it is
also our opinion that to achieve sensitivities and specificities
much higher than the 60-80% range it will be necessary to
take into account a wide variety of additional factors including
protein interaction data, structural data, localization data, ho-
mology data, the existence of other PTMs proximal to one
another, and enzymatic processivity. Additionally allowing for
variable motif widths, conservative amino acid substitutions
within motifs, and motif-dependent scoring thresholds are
three improvements to the methodology that are likely to
result in enhanced prediction performance.

Although improvements can be made, the increase in spec-
ificity and sensitivity achieved by scan-x over competing ap-
proaches likely benefits from the unique motif-based strategy
used. The deconvolution of correlated residues surrounding
protein modification sites by the motif-x program closely mim-
ics the biological situation in which specific sequence-based
recognition determinants are used by enzymes to modify a
wide variety of protein substrates. Retaining these residue
correlations in the prediction methodology not only allows
users of scan-x to infer responsible modifying enzymes but
also allows for improved discrimination of protein targets by
filtering those results that do not syntactically match a given
motif completely. In addition, the use of high stringency motifs
in the prediction procedure acts as a filter through which
incorrectly assigned modification sites are unlikely to pass,
thus ensuring the limited propagation of any PTM errors from
large scale mass spectrometry experiments (which may be
included in our training set) into the prediction results.

This study also exemplifies how large scale, enzyme-inde-
pendent, sequence data sets could be used to understand

post-translational modification motifs. Here we have carried
out the first computational prediction of the motif specificities
of the acetyltransferase family of proteins. This has led to the
discovery of eight potential acetylation motifs that are com-
pletely novel.

In the case of protein phosphorylation, despite the fact that
our approach does not use kinase-specific data, many of the
motifs extracted using motif-x are nearly identical to known
kinase motif signatures (20). This was most recently con-
firmed in a recent study aiming to create an atlas of linear
kinase motifs derived from kinase-specific data (41). This
motif atlas, and its corresponding bioinformatics tool Net-
Phorest, may potentially be used in conjunction with scan-x to
assign kinases to predicted phosphorylation sites. Further-
more we have provided strong evidence supporting the view
that kinase specificities have remained well conserved
through evolutionary history. Such a finding is not surprising
when one considers the fact that the kinase enzyme-to-sub-
strate interaction is usually a one-to-many relationship. Thus,
allowable variations in kinase residues affecting substrate
selectivity may be evolutionarily constrained because
changes have the potential to have a deleterious effect on a
large range of protein substrates.

We have also shown that there exist at least seven well
conserved motifs for which a kinase has yet to be identified.
Determining the identities of such kinases is in of itself an
interesting scientific challenge, and without in silico discovery
of motifs from phosphorylation data sets such as those pro-
vided by motif-x, predictions for sites bearing these motif
signatures would likely remain difficult to detect.

To make the scan-x tool as versatile as possible, in addition
to browsing the scan-x analyses carried out for this study,
users will be able to run scan-x analyses on their own input
data sets. Users that have unique modification data sets (e.g.
from organisms or modifications not covered here or in re-
sponse to particular stimuli) can predict additional modifica-
tion sites in their proteins or proteome of interest. For exam-
ple, a researcher studying the differential phosphorylation
effects of a particular kinase-influencing drug is able to upload
into motif-x those phosphorylation sites that are up-regulated
upon exposure to the drug and use scan-x to scan the result-
ing motifs against the appropriate proteome to find additional
potential downstream targets of the drug. In such an analysis,
the cutoff for high stringency may not be readily apparent
without calibrating sensitivities and specificities by performing
a cross-validation analysis similar to what was done in this
study; however, those sequences bearing scores that meet or
exceed the scores for the upper quartile of known targets are
likely to be high confidence hits.

We believe that using the added predictive functionality of
scan-x with the already widely used motif-x tool will provide
the necessary bridge between those who work on the pro-
teomic scale and those who work on the protein scale. Al-
though protein phosphorylation has been the most widely
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characterized protein post-translational modification over the
past decade, there is little evidence to suggest that its place
in the realm of protein modifications is unique in either prev-
alence or biological importance. Thus, future work will be
aimed at the improvement of the predictive performance of
the methodology as well as the addition of updated data from
a wide variety of modification types as data sets for them
become more abundant. It is the concerted interaction of
numerous protein modifications that likely contribute to a
significant amount of phenotypic variability (both beneficial
and detrimental), and it is therefore our hope that protein
modification prediction can also become a useful tool for
interpreting diversity in human populations and in those of
other species.
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